# **Unicoder AI Models - Complete Reference**

This document provides a comprehensive list of AI models available in Unicoder, your AI-powered IDE. It includes model details, performance metrics, and suggested usage.

#### **OpenAI Models**

| Model         | Description                                                                                        | Uptime | Throughput | Latency | Suggested<br>Usage / Label |
|---------------|----------------------------------------------------------------------------------------------------|--------|------------|---------|----------------------------|
| GPT-5         | Advanced reasoning & multimodal support; ideal for complex coding & analysis.                      | 95.23% | 74.8 ms    | 2-6 s   | Power /<br>Complex Tasks   |
| GPT-4o        | Multimodal (text, vision, audio);<br>suitable for AI applications<br>needing multiple input types. | 94.87% | 80 ms      | 3–10 s  | Multimodal / Pro<br>Tasks  |
| GPT-5<br>Nano | Small, cost-effective, low-latency autocomplete model.                                             | 95.23% | 74.8 ms    | 2-6 s   | Fast /<br>Autocomplete     |
| GPT-4.1       | Advanced large language model for coding & reasoning.                                              | 91.64% | 133 ms     | 2-7 s   | Reasoning /<br>Coding      |
|               |                                                                                                    |        |            |         |                            |

### **Google AI Models**

| Model               | Description                                                       | Uptime | Throughput | Latency       | Suggested<br>Usage / Label |
|---------------------|-------------------------------------------------------------------|--------|------------|---------------|----------------------------|
| Gemini<br>2.5 Pro   | Enhanced performance with large context window for complex tasks. | 95.00% | 95 ms      | 4–9 s         | Power / Complex<br>Tasks   |
| Gemini<br>2.0 Flash | Streamlined for quick responses; ideal for low-latency tasks.     | 97.44% | 150 ms     | 0.17-2.5<br>s | Fast /<br>Autocomplete     |

### **Moonshot AI Models**

| Model       | Description                                                             | Uptime | Throughput | Latency | Suggested Usage /<br>Label     |
|-------------|-------------------------------------------------------------------------|--------|------------|---------|--------------------------------|
| Kimi-<br>K2 | Preview model with 63k context window; suitable for large-scale coding. | N/A    | N/A        | N/A     | Experimental /<br>Long Context |

## **Zhipu AI Models**

| Model           | Description                                                | Uptime | Throughput | Latency      | Suggested<br>Usage / Label |
|-----------------|------------------------------------------------------------|--------|------------|--------------|----------------------------|
| GLM-4.5<br>AirL | Lightweight mixture-of-experts model; optimized for speed. | 97.59% | 135 ms     | 0.6–1.5<br>s | Fast / Coding              |

## DeepSeek AI Models

| Model                   | Description                                                           | Uptime | Throughput | Latency      | Suggested<br>Usage / Label     |
|-------------------------|-----------------------------------------------------------------------|--------|------------|--------------|--------------------------------|
| DeepSeek R1             | 671B parameters (37B active), open-source, strong reasoning.          | 96.23% | 120 ms     | 1-4 s        | Reasoning /<br>Open-Source     |
| DeepSeek V3             | Advanced LLM with efficient architecture and high performance.        | 97.23% | 33 ms      | 3-6 s        | Performance /<br>Complex Tasks |
| DeepSeek<br>V3.1 Turbo  | High-performance, low-<br>latency model for<br>autocomplete & coding. | 97.88% | 155 ms     | 0.4–1.1<br>s | Turbo / Fast                   |
| DeepSeek-<br>v3.1-turbo | High-performance turbo model from DeepSeek; optimized for speed.      | 97.88% | 155 ms     | 0.4–1.1<br>s | Turbo / Fast                   |
|                         |                                                                       |        |            |              |                                |

#### **Microsoft AI Models**

| Model             | Description                                 | Uptime | Throughput | Latency | Suggested Usage /<br>Label |
|-------------------|---------------------------------------------|--------|------------|---------|----------------------------|
| MAI-DS-<br>R1-FP8 | Reasoning-focused model; fast and reliable. | 98.77% | 82 ms      | 1–2.5 s | Reasoning / Fast           |

#### **Tencent AI Models**

| Model                    | Description                                                     | Uptime | Throughput | Latency      | Suggested<br>Usage / Label    |
|--------------------------|-----------------------------------------------------------------|--------|------------|--------------|-------------------------------|
| Hunyuan<br>A13B Instruct | Instruction-tuned 13B<br>model; optimized for<br>guided coding. | 98.90% | 165 ms     | 0.4–1.1<br>s | Instruction-<br>Tuned / Turbo |

#### **LLaMA AI Models**

| Model               | Description                                                    | Uptime | Throughput | Latency      | Suggested<br>Usage / Label  |
|---------------------|----------------------------------------------------------------|--------|------------|--------------|-----------------------------|
| LLaMA-4<br>Maverick | Mixture-of-experts architecture; excels in reasoning & coding. | 98.93% | 50 ms      | 0.5–1.5<br>s | Reasoning &<br>Coding / MoE |

### **Qwen AI Models**

| Model                           | Description                                                            | Uptime | Throughput | Latency      | Suggested<br>Usage / Label        |
|---------------------------------|------------------------------------------------------------------------|--------|------------|--------------|-----------------------------------|
| Qwen<br>2.5-72B                 | 72.7B params; strong long-<br>context understanding,<br>coding & math. | 96.00% | 80 ms      | 4-9 s        | Large Context /<br>Complex Tasks  |
| Qwen2.5<br>Coder 7B<br>Instruct | Instruction-tuned coding model; fast autocomplete & suggestions.       | 99.43% | 205 ms     | 0.3-0.9<br>s | Instruction-<br>Tuned / Turbo     |
| Qwen-3<br>Coder Plus            | Advanced code generation & development tasks.                          | 97.10% | 90 ms      | 2.5-6 s      | Advanced<br>Coding /<br>Reasoning |

#### **Alibaba AI Models**

| Model                             | Description                                         | Uptime | Throughput | Latency | Suggested<br>Usage / Label |
|-----------------------------------|-----------------------------------------------------|--------|------------|---------|----------------------------|
| Tongyi<br>DeepResearch 30B<br>A3B | 30B parameter model for deep research applications. | 95.99% | 90 ms      | 0.8-2 s | Research /<br>Reasoning    |

### **Anthropic AI Models**

| Model                | Description                                                    | Uptime | Throughput | Latency | Suggested<br>Usage / Label      |
|----------------------|----------------------------------------------------------------|--------|------------|---------|---------------------------------|
| Claude-3 7<br>Sonnet | High-performance model for reasoning & coding.                 | 99.95% | 150 ms     | 0.5-2 s | Fast /<br>Reasoning /<br>Coding |
| Claude<br>Opus 4     | High-performance, stable model for interactive coding.         | 99.95% | 150 ms     | 0.5-2 s | Fast /<br>Reasoning /<br>Coding |
| Claude<br>Sonnet 4   | Balanced performance & cost; high-volume production workloads. | 90.00% | 60 ms      | 2-6 s   | Production /<br>Reasoning       |
| Claude<br>Sonnet 4.5 | Upgraded Sonnet; reliable and high performance.                | 98.70% | 85 ms      | 2.5-6 s | Production /<br>Reasoning       |

#### **Notes / Recommendations**

- Turbo / Fast models: Great for autocomplete, live coding, and suggestions.
- **Reasoning / Complex models**: Best for debugging, code generation, and heavy logic tasks.
- Instruction-Tuned models: Ideal for following user instructions precisely.
- Large Context models: Suitable for long scripts, notebooks, or multi-file projects.
- Preview / Experimental models (e.g., Kimi-K2) should be labeled clearly for advanced users.
- Consider **latency and uptime** when suggesting models to users for interactive tasks.